Jeux similaires

How Lego Is Constructing the Next Generation of Engineers

dimanche 15 décembre 2013




There are no ballpoint grenade pens, no wrist-mounted dart guns, no Aston Martins tricked out with smoke screens, bulletproof glass, revolving license plates or ejector seats. Still, the geek-approved contraptions at Lego’s research-and-development facility in Billund, Denmark, are as covetable as anything cooked up by Q Branch.
Q Branch, of course, is the section of Her Majesty’s Secret Service (MI6) that supplies James Bond with fanciful gadgetry. The headquarters of MI6 is a ziggurat-like fortress known within the intelligence community as Legoland. It gets its name from the toy company that has supplied earth with more than 600 billion tiny plastic bricks—about 80 for each inhabitant. The Lego company’s own HQ is a modest campus as neat and well-ordered as a quadratic equation. Huge colored bricks—a corporate nod to art—lie scattered in tidy piles, and simple rectangular buildings bear names like Idea House and Head Office.
Lego’s own MI6, its top-secret R & D lab, is on the second floor of a drab brick structure called the Tech Building. Inside, gearheads in jeans and fleece pullovers are surrounded by enough electronic ganglia to jump-start Frankenstein’s monster. Amid a spaghetti of wires and a blaze of red, green, blue, yellow and purple blocks is an amazing array of robot prototypes, all capable of exasperating behavior. Some of these marvels propel themselves on Lego wheels; others skitter around on Lego legs. There’s a scorpionlike robot that turns sharply, snaps its claws and searches for an infrared beacon “bug.” There’s a Mohawked android that flings little red balls as it rumbles. And there’s a fanged robot snake that, with the wave of a smartphone, shakes, rattles and rolls. Dangle your cell in front of the serpent’s head and it lunges to bite you.
All three gizmos are characters in Mindstorms EV3, the latest update of a do-it-yourself kit that enables budding Edisons to assemble robots, program them on PCs and Macs, and control them via Bluetooth, downloadable apps and voice commands. Like any other Lego, Mindstorms EV3 is a jumble of parts (nearly 600 separate elements) that can be plugged together many ways. The toy, which clocks in at $350 and will be in stores this fall, comes with 3-D interactive building instructions for 17 different bots that walk, talk and stalk. And, this being Lego, enterprising kids are encouraged to hack away and turn the components into whatever they can dream up.
***
Once upon a time, teachers lacked the tools to excite and engage pupils in engineering. And the technological know-how required to put together a juddering robot limited the audience to high-school and university students. That all changed in 1998 when Lego launched its first wave of programmable bots. By the second wave, in 2006, the programming language had become visual and kids could make bots do pretty much anything simply by stringing directives together on a computer. “Today a second grader can make her own wall-avoiding triceratops in 20 minutes,” says Chris Rogers, a professor of mechanical engineering at Tufts University.
With bricks, action and hues as vibrant as tropical sunsets, Lego created a way for novices to learn the basics of structural engineering: bracing, tension and compression, loading constraints, building to scale. By combining Lego bricks to sensors, servo motors and microprocessors, those novices can now explore everything from basic pulleys and belts to computer programming. “Mindstorms EV3 makes tinkering with machines cool again,” says Ralph Hempel, author of Lego Spybiotics Secret Agent Training Manual.
Mindstorms encourages young tinkerers to play their way into robotics. “It puts no limits on your fantasies,” says Niels Pugholm, a Danish college student who’s been playing with Legos from the time he was old enough to know he shouldn’t swallow them. “Most toys pre-tell a story; Mindstorms is exploratory and has no set rules. If I construct a Mars rover robot, I can rebuild it into a robotic arm and then a robotic humanoid. Lego robotics is a sneaky educational way to learn about design, planning, construction and, most importantly, reconstruction.” In Denmark, he says, it’s obligatory for a child to build a Babel Tower out of Legos that “inevitably gets demolished.”
The EV3 is the third generation of ­demolishable Mindstorms, and the second that’s been crowd-sourced. “The power of many,” says Marc-André Bazergui, one of a dozen Lego citizen developers—who call themselves the 12 Monkeys—impaneled to design the latest edition. Over the years, the many have fashioned Lego bots that solve Rubik’s Cubes, sort M&M’s by color and convert conventional toilets into robo-flushers.
Part of the so-called “maker movement,” Mindstorms’ fanatic online community shares ideas by uploading plans for new creations to Lego forums and posting videos to YouTube. Across the globe, schoolchildren belong to leagues and hold tournaments in which teams are challenged to design, build and program a Lego robot to complete a specific task related to a theme like climate control or transportation safety. In the United States, competitions are run by FIRST (For Inspiration and Recognition of Science and Technology), a nonprofit founded by the seemingly inexhaustible inventor Dean Kamen (creator of the Segway scooter). Every spring FIRST holds championships in four robotics divisions, spanning ages 6 to 18. At this year’s three-day Lego block party at the Edward Jones Dome in St. Louis, 650 teams vied for robotic superiority and more than $16 million in scholarships to 140 colleges.
Half of all stateside middle schools and about a quarter of all elementary and high schools have folded Mindstorms into their curricula. The Massachusetts Institute of Technology has a Lego Chair, which is not a chesterfield made of Lego bricks, but an endowed professorship at the college’s media lab. At Tufts, the robotics sets have evoked an equal number of dissertations and disquisitions with catchy titles like “Teaching Basic Cardio-Vascular Mechanics with Lego Models: A High School Case Study.”
Rogers worked with Lego to develop Robolab—a robotic approach to learning science and math—that’s been used in some 50,000 schools worldwide and has been translated into 15 languages. He stresses design thinking, the idea that you frame a problem by first imagining its solution. His approach is based on demonstration, critique and iteration: Everything can be made better, even failure. “The kids make an educated guess and then run experiments to prove their theories,” he says. “They see that there is no right or wrong answer, just an infinite number of ways to address a problem. Learning that is as critical to engineering as it is to life.”
Samuel Beckett exhorted: “Fail better.”

Aucun commentaire:

Enregistrer un commentaire